Testing a single regression coefficient in high dimensional linear models.

نویسندگان

  • Wei Lan
  • Ping-Shou Zhong
  • Runze Li
  • Hansheng Wang
  • Chih-Ling Tsai
چکیده

In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the significance of each single regression coefficient is no longer applicable. This is mainly because the number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be employed to estimate the regression coefficient associated with the target covariate. In addition, we demonstrate that the resulting estimator is consistent and asymptotically normal even if the random errors are heteroscedastic. This enables us to apply the z-test to assess the significance of each covariate. Based on the p-value obtained from testing the significance of each covariate, we further conduct multiple hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical examples are presented to illustrate the finite sample performance and the usefulness of the proposed method, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

Testing covariates in high-dimensional regression

Abstract In a high-dimensional linear regressionmodel, we propose a new procedure for testing statistical significance of a subset of regression coefficients. Specifically, we employ the partial covariances between the response variable and the tested covariates to obtain a test statistic. The resulting test is applicable even if the predictor dimension is much larger than the sample size. Unde...

متن کامل

پیش‌بینی قیمت‌های نقدی گازطبیعی به کمک مدل‌های غیرخطی ناپارامتریک

Developing models for accurate natural gas spot price forecasting is critical because these forecasts are useful in determining a range of regulatory decisions covering both supply and demand of natural gas or for market participants. A price forecasting modeler needs to use trial and error to build mathematical models (such as ANN) for different input combinations. This is very time consuming ...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Inference for Single-index Quantile Regression Models with Profile Optimization by Shujie Ma

Single index models offer greater flexibility in data analysis than linear models but retain some of the desirable properties such as the interpretability of the coefficients. We consider a pseudo-profile likelihood approach to estimation and testing for single-index quantile regression models. We establish the asymptotic normality of the index coefficient estimator as well as the optimal conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of econometrics

دوره 195 1  شماره 

صفحات  -

تاریخ انتشار 2016